Dynamic Expression of CX36 Protein in Kainic Acid Kindling induced Epilepsy

نویسندگان

  • Xue-mei Wu
  • Guang-liang Wang
  • Xiao-sheng Hao
  • Jia-chun Feng
چکیده

Connexin (Cx) 36 is known to be a component of gap junctions, and has been suggested to play an important role in epilepsy. In order to determine dynamic changes of Cx36 protein expression in epilepsy and investigate the role of Cx36 in electroencephalographic activity and pathogenesis, we utilized kainic acid (KA) to induce epileptogenesis. We found that epileptic discharges began 71.8 ± 23.7 s after KA administration. Spike frequency and amplitude of epileptiform activity reached maximal levels at 30 ± 5.2 min. The maximum level of spike frequency and amplitude of epileptiform activity was 13.9 ± 0.3 Hz and 198 ± 14.3mV respectively. Employing Western blotting and immunohistochemistry, we demonstrated that hippocampal Cx36 protein expression was significantly increased 6 h after KA kindling compared to control or sham groups, but decreased in 3 d and 7d groups. Our results suggested that the dynamic change of Cx36 expression may play an important role inepilepsy, and the specific manipulation of Cx36 expression may be a potential target for the treatment of epilepsy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of connexin 36 decreases seizure activity in the Kainic acid-induced rat model of epilepsy

Aim: To investigate the effect of connexin 36-associated (Cx36) channel blockers on the process of epilepsy and its mechanisms. Methods: We examined the anticonvulsant properties of carbenoxolone, quinine, and quinidine in the Kainic Acid-induced (KA-induced) model of epilepsy in rats, and we investigated the effects of these blockers on epileptic discharge and the expression of Cx36. Results: ...

متن کامل

Expression of connexin genes in hippocampus of kainate-treated and kindled rats under conditions of experimental epilepsy.

We have analyzed whether the expression of connexin genes is altered in the hippocampus of kindled and kainate-treated rats, i.e., animal models of human temporal lobe epilepsy. We have tested this hypothesis by analyzing mRNA, protein abundance and cellular location of connexins (Cx) 43, 36, 32 and 30. The expression of glial fibrillary acid protein and mRNA was also monitored both in kainate-...

متن کامل

The protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat

Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...

متن کامل

Effect of connexin 36 blockers on the neuronal cytoskeleton and synaptic plasticity in kainic acid-kindled rats

In this study we investigated the potential anti-epileptogenic effect of neuronal connexin Cx36 gap junction blockage via inhibition of microtubule-associated protein 2 (MAP-2) and synaptophysin (SYP) overexpression. Thirty adult male Wistar rats were divided into five groups (six animals per group): control, sham, carbenoxolone (CBX), quinine (QN), and quinidine (QND). An epilepsy model was pr...

متن کامل

Remarkable alterations of Nav1.6 in reactive astrogliosis during epileptogenesis

Voltage-gated sodium channels (VGSCs) play a vital role in controlling neuronal excitability. Nav1.6 is the most abundantly expressed VGSCs subtype in the adult central nervous system and has been found to contribute to facilitate the hyperexcitability of neurons after electrical induction of status epilepticus (SE). To clarify the exact expression patterns of Nav1.6 during epileptogenesis, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017